Cellular levels of class 1 and class 3 aldehyde dehydrogenases and certain other drug-metabolizing enzymes in human breast malignancies.
نویسندگان
چکیده
Molecular determinants of cellular sensitivity to cyclophosphamide, long the mainstay of chemotherapeutic regimens used to treat metastatic breast cancer, include class 1 and class 3 aldehyde dehydrogenases (ALDH-1 and ALDH-3, respectively), which catalyze the detoxification of this agent. Thus, interindividual variation in the activity of either of these enzymes in breast cancers could contribute to the wide variation in clinical responses that are obtained when such regimens are used to treat these malignancies. Consistent with this notion, ALDH-1 levels in primary and metastatic breast malignancies were found to range from 1-276 and 8-160 mIU/g tissue, respectively, and those of ALDH-3 range from 1-242 and 6-97 mIU/g tissue, respectively. ALDH-1 and ALDH-3 levels in normal breast tissue predicted the levels of these enzymes in primary and metastatic breast malignancies present in the same individuals. Confirming and extending the observations of others, levels of glutathione, a molecular determinant of cellular sensitivity to various DNA cross-linking agents including cyclophosphamide, and of DT-diaphorase, glutathione S-transferases, and cytochrome P450 1A1, each of which is known to catalyze the detoxification/toxification of one or more anticancer agents (although not of cyclophosphamide), also varied widely in primary and metastatic breast malignancies. Given the wide range of ALDH-1, ALDH-3, and glutathione levels that were observed in malignant breast tissues, measurement of their levels in normal breast tissue and/or primary breast malignancies prior to the initiation of chemotherapy is likely to be of value in predicting the therapeutic potential, or lack thereof, of cyclophosphamide in the treatment of metastatic breast cancer, thus providing a rational basis for the design of individualized therapeutic regimens when treating this disease.
منابع مشابه
Expression of cytochrome P450 and glutathione S-transferase in human bone marrow mesenchymal stem cells
Currently several studies are being carried out on various properties of mesenchymal stem cells (MSCs)however there are a few investigations about drug metabolizing properties of these cells. The aim of thisstudy was to measure the key factors involved in drug metabolism in human bone marrow MSCs. For thispurpose, cellular glutathione (GSH), glutathione Stransferase (GSTs) and...
متن کاملAlcohol and aldehyde dehydrogenases: structures of the human liver enzymes, functional properties and evolutionary aspects.
All three types of subunit of class I human alcohol dehydrogenase have been analyzed both at the protein and cDNA levels, and the structures of alpha, beta 1, beta 2, gamma 1, and gamma 2 subunits are known. The same applies to class II pi subunits. Extensive protein data are also available for class III chi subunits. In the class I human isozymes, amino acid exchanges occur at 35 positions in ...
متن کاملDe novo expression of transfected human class 1 aldehyde dehydrogenase (ALDH) causes resistance to oxazaphosphorine anti-cancer alkylating agents in hamster V79 cell lines. Elevated class 1 ALDH activity is closely correlated with reduction in DNA interstrand cross-linking and lethality.
Human class 1 aldehyde dehydrogenase (hALDH-1) can oxidize aldophosphamide, a key aldehyde intermediate in the activation pathway of cyclophosphamide and other oxazaphosphorine (OAP) anti-cancer alkylating agents. Overexpression of class 1 ALDH (ALDH-1) has been observed in cells selected for survival in the presence of OAPs. We used transfection to induce de novo expression of human ALDH-1 in ...
متن کاملRole of farnesoid X receptor in establishment of ontogeny of phase-I drug metabolizing enzyme genes in mouse liver
The expression of phase-I drug metabolizing enzymes in liver changes dramatically during postnatal liver maturation. Farnesoid X receptor (FXR) is critical for bile acid and lipid homeostasis in liver. However, the role of FXR in regulating ontogeny of phase-I drug metabolizing genes is not clear. Hence, we applied RNA-sequencing to quantify the developmental expression of phase-I genes in both...
متن کاملThe Role of Mitochondrial Aldehyde Dehydrogenase 2 (ALDH2) in Neuropathology and Neurodegeneration.
Aldehydes-induced toxicity has been implicated in many neurodegenerative diseases. Exposure to reactive aldehydes from (1) alcohol and food metabolism; (2) environmental pollutants, including car, factory exhausts, smog, pesticides, herbicides; (3) metabolism of neurotransmitters, amino acids and (4) lipid peroxidation of biological membrane from excessive ROS, all contribute to 'aldehydic load...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 3 11 شماره
صفحات -
تاریخ انتشار 1997